Article ID Journal Published Year Pages File Type
249101 Building and Environment 2010 11 Pages PDF
Abstract

This paper presents a self-adaptive sensor fault detection and diagnosis (FDD) strategy for local system of air handing unit (AHU). This hybrid strategy consists of two stages. In the first stage, a fault detection model for the AHU control loop including two back-propagation neural network (BPNN) models is developed. BPNN models are trained by the normal operating data of system. Based on sensitive analysis for the first BPNN model, the second BPNN model is constructed in the same control loop. In the second stage, a fault diagnosis model is developed which combines wavelet analysis method with Elman neural network. The wavelet analysis is employed to process the measurement data by extracting the approximation coefficients of sensor measurement data. The Elman neural network is used to identify sensor faults. A new approach for increasing adaptability of sensor fault diagnosis is presented. This approach gains clustering information of the approximations coefficients by fuzzy c-means (FCM) algorithm. Based on cluster information of the approximation coefficients, the unknown sensor fault can be identified in the control loop. Simulation results in this paper show that this strategy can successfully detect and diagnose fixed biases and drifting fault of sensors for the local system of AHU.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,