Article ID Journal Published Year Pages File Type
2493628 Neuropharmacology 2011 8 Pages PDF
Abstract

Previously, it was shown that ethanol-dependent animals display increased sensitivity to the general opioid receptor antagonist nalmefene compared to naltrexone. It was hypothesized that the dissociable effects of the two antagonists were attributable to a κ-opioid receptor mechanism. Nucleus accumbens dynorphin is upregulated following chronic ethanol exposure and such neuroadaptations could contribute to nalmefene’s increased potency in ethanol-dependent animals. To test this hypothesis, male Wistar rats were trained to self-administer ethanol using an operant conditioning procedure. Animals were then implanted with bilateral intra-accumbens shell guide cannulae and assigned to either a chronic intermittent ethanol vapor-exposure condition (to induce dependence) or an air-exposed control group. Following a one-month exposure period, nalmefene, nor-binaltorphimine (nor-BNI; selective for κ-opioid receptors) or a combination of the selective opioid receptor antagonists CTOP and naltrindole (selective for the μ- and δ-opioid receptors, respectively) were site-specifically infused into the nucleus accumbens shell prior to ethanol self-administration sessions during acute withdrawal. Nalmefene and CTOP/naltrindole dose-dependently reduced ethanol self-administration in nondependent and dependent animals, whereas nor-BNI selectively attenuated ethanol self-administration in ethanol-dependent animals without affecting the self-administration of nondependent animals. Further analysis indentified that intra-accumbens shell nalmefene was more potent in ethanol-dependent animals and that the increased potency was attributable to a κ-opioid receptor mechanism. These data support the concept that dysregulation of DYN/κ-opioid receptor systems contributes to the excessive self-administration observed in dependent animals and suggest that pharmacotherapeutics for ethanol dependence that target κ-opioid receptors, in addition to μ- and δ-opioid receptors, are preferable to those that target μ- and δ-opioid receptor mechanisms alone.

► Intermittent ethanol vapor exposure induced escalated responding for ethanol. ► Intra-accumbens nalmefene has increased potency in dependent animals. ► Intra-accumbens κ-opioid receptor antagonism selectively reduced escalated self-administration in dependent animals. ► Intra-accumbens μ- and δ-opioid receptor antagonists produce comparable effects in nondependent and dependent animals.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , ,