Article ID Journal Published Year Pages File Type
249366 Building and Environment 2010 10 Pages PDF
Abstract

The performance of a coupled system of the Desktop Personalized Ventilation Air Terminal Device (DPV ATD) and desk mounted fans (DMF) was examined in a field environmental chamber. Cooling effect was evaluated using manikin-based equivalent temperature (Teq,), of each of the 26 body segments of a breathing thermal manikin (BTM) and personal exposure effectiveness (PEE) was used as an indicator for effectiveness of ventilation. Computational fluid dynamics (CFD) was used to examine the velocity field generated around BTM to provide better understanding of the relationship between air patterns generated and convective cooling effect on each of the body segments produced by DPV ATD coupled with DMF. Four different positions of DPV ATD were examined: two positions each in front and on the side of the BTM. Measurements were conducted at ambient temperature of 26 °C and PV air temperature of 23 °C at a flow rate of 10 L/s. The results indicate that coupling of DPV ATD and DMF distributes cooling more uniformly across BTM surfaces and therefore has the potential to reduce risk of draft discomfort as compared to usage of DPV ATD alone. Personalized exposure effectiveness was increased in 3 of the positions examined when the coupled system was used.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,