Article ID Journal Published Year Pages File Type
2493662 Neuropharmacology 2011 11 Pages PDF
Abstract

Chronic stressful life events are risk factors for depression often accompanied by homeostatic disturbances. Hypothalamic neuropeptides, such as orexins (OXs) and melanin-concentrating hormone (MCH), are involved in regulation of several autonomic functions that are altered in depression. However, little is known about the link between orexinergic or MCH-ergic systems and depression. Using double immunohistochemical labeling for OX- or MCH-containing neurons and Fos protein, we studied the effects of a chronic selective serotonin reuptake inhibitor antidepressant treatment (fluoxetine) on the OX and MCH neuronal activation in mice exposed to unpredictable chronic mild stress (UCMS), a rodent model of depression. Western blot was also performed to assess OX and MCH receptor expression in various brain areas. Finally, almorexant, a dual OX receptor antagonist, was assessed in the tail suspension test. UCMS induced physical and behavioral disturbances in mice reversed by 6-week fluoxetine treatment. Orexinergic neurons were more activated in the dorsomedial and perifornical hypothalamic area (DMH-PFA) of UCMS-subjected mice compared to the lateral hypothalamus (LH), and this increase was reversed by 6-week fluoxetine treatment. UCMS also reduced expression of OX-receptor 2 in the thalamus and hypothalamus, but not in animals chronically treated with fluoxetine. MCH neurons were neither affected by UCMS nor by antidepressant treatment, while UCMS modulated MCH receptor 1 expression in thalamus and hippocampus. Finally, chronic but not acute administration of almorexant, induced antidepressant-like effect in the tail suspension test. These data suggest that OX neurons in the DMH-PFA and MCH-ergic system may contribute to the pathophysiology of depressive disorders.

► We study the orexinergic activity in a rodent model of depression. ► Chronic stress increases Fos expression in region-specific orexin neurons. ► This increase is reversed by chronic SSRI antidepressant treatment. ► Orexin receptor 2 expression is modified in various brain areas after chronic stress. ► Symptoms of depression are reversed by dual orexin receptor antagonist.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , ,