Article ID Journal Published Year Pages File Type
249378 Building and Environment 2010 10 Pages PDF
Abstract

In order to reduce indoor pollutant exposure, people become increasingly interested in portable air cleaning devices, which can be positioned with flexibility. Such purification devices usually discharge cleaned air with strong momentum, which can interrupt indoor airflow created by air-conditioning units. If a well-organized air circulation to a portable air cleaner is not achieved, indoor air purification cannot be fully ensured. This study has used both measurement and computational fluid dynamics (CFD) modeling to investigate the flow interaction between an air conditioner and a portable air cleaner to purify indoor gaseous pollutants. A workshop environment conditioned by an air conditioner and cleaned by a portable air cleaner was mimicked in an environmental chamber to obtain data for validation of a CFD program. Then CFD was applied to evaluate factors that may affect air purification including: positioning of the air conditioner and air cleaner, air conditioner diffuser types, air-conditioning cooling or heating running mode, and location of pollutant sources. The study finds the simulation results are in good agreement with the corresponding experimental data. The positioning coordination of an air conditioner and an air cleaner, and selection of air conditioner diffuser types shall assure a good air circulation cycle to the air cleaner to improve air purification efficacy. In addition to the cleaner effectiveness, it is also recommended to evaluate an air cleaning device in terms of the absolute pollutant concentration, if the portable air cleaner is under the interaction of an air conditioner and the local performance data are interested.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,