Article ID Journal Published Year Pages File Type
2494005 Neuropharmacology 2011 10 Pages PDF
Abstract

If the pregnant and lactating female rats are exposed to environmental levels of bisphenol-A (BPA), their male offspring will display hyperactivity and attention-deficit. In patients with attention-deficit/hyperactivity disorder (ADHD), the size of the amygdala is reported to be reduced. This study examined functional alterations in the basolateral amygdala (BLA) of the postnatal 28-day-old male offspring exposed perinatally to BPA (BPA-rats). We specifically focused on the synaptic properties of GABAergic/dopaminergic systems in the BLA. A single electrical stimulation of the capsule fibers evoked multispike responses with an enhanced primary population spikes (1st-PS) in the BPA-rats. A single train of high-frequency stimulation of the fibers induced NMDA receptor (NMDAR) dependent long-term potentiation (LTP) in BPA-rats, but not in control rats. Also, paired-pulse inhibition (PPI, GABA-dependent) in control rats was reversed to paired-pulse facilitation (PPF) in BPA-rats. Perfusion of slices obtained from BPA-rats with the GABAA receptor (GABAAR) agonist muscimol blocked the multispike responses and LTP, and recovered PPI. By contrast, the dopamine D1 receptor antagonist SCH23390 abolished LTP and attenuated the increased amplitude of 1st-PS in BPA-rats. Conversely, blockade of GABAAR by bicuculline could produce the multispike responses and PPF in BLA in control rats. Furthermore, in BLA the infusion of SCH23390, muscimol or the NMDAR blocker MK801 ameliorated the hyperactivity and improved the deficits in attention. These findings suggest that the perinatal exposure to BPA causes GABAergic disinhibition and dopaminergic enhancement, leading to an abnormal cortical-BLA synaptic transmission and plasticity, which may be responsible for the hyperactivity and attention-deficit in BPA-rats.This article is part of a Special Issue entitled ‘Synaptic Plasticity & Interneurons’.

Research highlights► Male rats exposed perinatally to BPA showed hyperactivity and attention-deficit. ► Amygdala of BPA-rats appeared GABAergic disinhibition and dopaminergic potentiation. ► Changes in GABAergic and dopaminergic systems led to an abnormal synaptic plasticity. ► GABAAR agonist or D1R blocker could ameliorate hyperactivity and attention-deficit.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , , ,