Article ID Journal Published Year Pages File Type
2495168 Neuropharmacology 2007 12 Pages PDF
Abstract

Conantokin-G (con-G), conantokin-T (con-T), a truncated conantokin-R (con-R[1–17]), that functions the same as wild-type con-R, and variant sequences of con-T, were chemically synthesized and employed to investigate their selectivities as antagonists of glutamate/glycine-evoked ion currents in human embryonic kidney-293 cells expressing various combinations of NMDA receptor (NMDAR) subunits (NR), viz., NR1a/2A, NR1a/2B, NR1b/2A and NR1b/2B. Con-G did not substantially affect ion flow into NR1a,b/NR2A-transfected cells, but potently inhibited cells expressing NR1a,b/NR2B, showing high NR2B selectivity. Con-T and con-R served as non-selective antagonists of all of four NMDAR subunit combinations. C-terminal truncation variants of the 21-residue con-T were synthesized and examined in this regard. While NMDAR ion channel antagonist activity, and the ability to adopt the Ca2+-induced α-helical conformation, diminished as a function of shortening the COOH-terminus of con-T, NMDAR subtype selectivity was enhanced in the con-T[1–11], con-T[1–9], and con-T[1–8] variants toward NR2A, NR1b, and NR1b/2A, respectively. Receptor subtype selectivity was also obtained with Met-8 sequence variants of con-T. Con-T[M8A] and con-T[M8Q] displayed selectivity with NR2B-containing subunits, while con-T[M8E] showed enhanced activity toward NR1b-containing NMDAR subtypes. Of those studied, the most highly selective variant was con-T[M8I], which showed maximal NMDAR ion channel antagonism activity toward the NR1a/2A subtype. These studies demonstrate that it is possible to engineer NMDAR subtype antagonist specificity into con-T. Since the subunit composition of the NMDAR varies temporally and spatially in developing brain and in various disease states, conantokins with high subtype selectivities are potentially valuable drugs that may be used at specific stages of disease and in selected regions of the brain.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , ,