Article ID Journal Published Year Pages File Type
2495305 Neuropharmacology 2007 8 Pages PDF
Abstract

The gaseous anaesthetic N2O displays analgesic, anxiolytic, and amnesic properties and has addictive psychedelic effects. N2O can further act as a neuroprotective agent, but may also become neurotoxic under certain conditions. Here, we employed whole-cell patch-clamp techniques in acute brain slices, and electrical afferent and infrared-guided laser stimulation to examine how N2O (65%) can affect NMDA receptor (NMDAR)-mediated synaptic transmission to principal neurons (PNs) of the adult murine basolateral amygdala (BLA). The BLA plays a critical role in anaesthetic-induced amnesia, the formation of aversive memories, as well as in fear and addictive behaviour. We evoked NMDAR-mediated excitatory postsynaptic currents (NMDAR-EPSCs) in PNs of the BLA (BLA-PNs). We found these currents to be markedly decreased by N2O via pre- and postsynaptic actions: Without changing their kinetics and open probability, N2O impeded the voltage-dependent channel opening of NMDARs in BLA-PNs and diminished their unitary conductance as estimated by non-stationary fluctuation analysis. In addition, our data speak in favour of a N2O-produced reduction in the probability of glutamate release at the synapses generating the NMDAR-EPSCs. It is conceivable that these effects not only contribute to anaesthesia and anxiolysis, but also have bearings on learning and memory as well as excitotoxicity in the amygdala.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , ,