Article ID Journal Published Year Pages File Type
249789 Building and Environment 2009 10 Pages PDF
Abstract

It has been documented that diseases can spread within an aircraft cabin from the sneezing, coughing or breathing of a sick passenger. To understand the spreading mechanism it is very important to quantify the airflow and droplet transmission around a sneezing/coughing incident. In this project, tracer gas experiments were carried out in a full-scale Boeing 767-300 mock-up to study the global transport process of contaminated air within the cabin. Computational fluid dynamics (CFD) simulation was also used to provide additional information for understanding the principle. A steady airflow field was simulated first and then it was compared with the experimental data. The global airflow patterns were similar to those observed experimentally. This velocity field was adopted as the initial condition for further unsteady pollutant transport simulation. Experimental and simulated results were compared and discussed to develop a relationship between concentration and airflow pattern, source location, transport direction, and ventilation rate. Finally, the overall picture of concentration evolution by both experimental and simulated approaches was discussed.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,