Article ID Journal Published Year Pages File Type
250976 Composite Structures 2015 10 Pages PDF
Abstract

An experimentally validated micro-scale analysis of the visco-thermo-mechanical behavior of polymer matrix composites under different loads is proposed. A new constitutive law for the matrix material is developed taking into account the pressure dependence of the material as well as strain-rate and temperature dependence. Capturing the matrix behavior under multi-axial stress states is concluded to be essential to accurately predict the composite material behavior, even when considering simple load cases such as transverse compression and/or shear. Without any calibration procedure at the composite level, good agreement with the experimental data is observed for different loading conditions, including strain-rate dependency.Using this validated micro-scale model, a three-dimensional simulation of the formation of a kink band under longitudinal compression of the composite is conducted. A new evidence at micro-scale is found supporting the hypothesis that shear stresses transferred between fibers and matrix are particularly important in the formation of the kink band.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , , ,