Article ID Journal Published Year Pages File Type
2510027 Antiviral Research 2012 12 Pages PDF
Abstract

Hepatitis C virus (HCV) is a major human pathogen that causes many serious diseases, including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Treatments for this virus are inadequate, and improved antiviral therapies are necessary. Although the precise mechanisms regulating HCV entry into hepatic cells are still unknown, the low-density lipoprotein receptor (LDLR) has been shown to be essential for entry of infectious HCV particles. Liver X receptors (LXR) were recently reported to control LDLR expression through the regulation of the expression of the Idol (inducible degrader of the LDLR) protein, which could trigger the ubiquitination and degradation of LDLR. In this study, we analyzed the antiviral effect of Idol in vitro. The results demonstrated that Huh7.5.1 cells that exogenously expressed Idol were resistant to HCV infection. Next, the treatment of HCV-infected Huh7.5.1 cells with either synthetic LXR agonists (GW3965 or T0901317) or the natural LXR ligand 24(S),25-epoxycholesterol inhibited HCV infection in a dose-dependent manner. Furthermore, a combination of LXR agonists and HCV RNA replication inhibitors exerted additive effects against HCV, as revealed by isobologram analysis. In conclusion, our data indicate that molecules such as LXR agonists, which could stimulate the expression of Idol, represent a new class of potential anti-HCV compounds, and these compounds could be developed for therapeutic use against HCV infection, either as a monotherapy, or in combination with other anti-HCV drugs.

► Liver X receptors control LDLR expression in Idol-dependent manner in Huh7.5.1 cells. ► Idol (inducible degrader of the LDLR) or LXR agonists can inhibit HCV infection. ► Idol or LXR agonists does not inhibit HCV replication in replicon system.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , ,