Article ID Journal Published Year Pages File Type
251587 Composite Structures 2014 15 Pages PDF
Abstract

In this work an innovative multiscale model able to perform complete failure analyses of fiber-reinforced composite materials subjected to transverse cracking is presented, taking advantage of an adaptive multilevel domain decomposition method in conjunction with a fracture criterion able to track the crack path. Competition between fiber/matrix interface debonding and kinking phenomena from and towards the matrix is accounted for, whereas continuous matrix cracking is modeled by using a novel shape optimization strategy. Numerical calculations are performed with reference to the complete failure analysis of a single-notched fiber-reinforced composite beam subjected to a three-point bending test. Comparisons with reference solutions obtained by means of a fully microscopic analysis are presented in order to validate the proposed multiscale approach.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,