Article ID Journal Published Year Pages File Type
252021 Composite Structures 2013 14 Pages PDF
Abstract

This study investigates the replacement of traditional materials (steel, wood and concrete) in electricity transmission lines by fiber glass pultruded members. The first part of the study summarizes a comparison between different design approaches to experimental data for glass fiber pultruded sections. For this purpose, a total of fifteen specimens made of E-glass and either polyester or vinylester matrix are tested: (i) angle-section, square-section and rectangular-section specimens are subjected to axial compression; (ii) I-section and W-section specimens are tested under bending. The experimental results are summarized in terms of the failure mode, critical buckling load and load–displacement relationships. Design equations available in FRP design manuals and analytical methods proposed in the literature are used to predict the critical buckling load and compared to the experimental results. Design of various FRP pultruded sections and cost estimate are conducted for 69 kV electricity transmission portal frame and a total distance of 10 km. The significance of the present findings with regard to economic solutions is discussed.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,