Article ID Journal Published Year Pages File Type
252687 Composite Structures 2010 13 Pages PDF
Abstract

Fiber-reinforced polymer (FRP) sandwich deck panels with sinusoidal core geometry have shown to be successful both in new construction and the rehabilitation of existing bridge decks. This paper is focused on an experimental study of the strength evaluations of a honeycomb sandwich core under out-of-plane compression and transverse shear. The sinusoidal core is made of E-glass Chopped Strand Mat (ChSM) and Polyester resin. The compressive, tensile and shear strengths were first obtained from coupon tests. The out-of-plane compression tests were performed on representative single-cell volume elements of sandwich panels, and the tests included “stabilized” samples to induce compression failure, and “bare” samples to induce local buckling of the core. Finally, four-point bending tests were conducted to study the structural strength behavior under transverse shear. Two types of beam samples were manufactured by orienting the sinusoidal wave either along the length (longitudinal) or along the width (transverse). Both typical shear failure mode of the core material and delamination at the core–facesheet bonding interface were observed for longitudinal samples. The failure for transverse samples was caused by core panel separation. For both single-cell and beam-type specimen tests, the number of bonding layers, i.e., the amount of ChSM contact layer and resin used to embed the core into the facesheet, and the core thickness are varied to study their influence. The experimental results described herein can be subsequently used to develop design guidelines.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,