Article ID Journal Published Year Pages File Type
252697 Composite Structures 2010 9 Pages PDF
Abstract

This paper presents an analytical approach to investigate nonlinear response of functionally graded cylindrical panels under uniform lateral pressure with temperature effects are incorporated. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for cylindrical panels are derived by using the classical shell theory with both geometrical nonlinearity in von Karman–Donnell sense and initial geometrical imperfection are taken into consideration. The resulting equations are solved by Galerkin method to determine explicit expressions of nonlinear load-deflection curves. Stability analysis for a simply supported panel shows the effects of material and geometric parameters, in-plane restraint and temperature conditions, and imperfection on the nonlinear response of the panel.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,