Article ID Journal Published Year Pages File Type
252711 Composite Structures 2011 9 Pages PDF
Abstract

As a first endeavor, the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates is investigated using the nonlocal elasticity theory. The formulation is derived based on the first order shear deformation theory (FSDT). The solution procedure is based on the transformation of the governing equations from physical domain to computational domain and then discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. The formulation and the method of the solution are firstly validated by carrying out the comparison studies for the isotropic and orthotropic rectangular plates against existing results in literature. Then, the effects of nonlocal parameter in combination with the geometrical shape parameters, thickness-to-length ratio and the boundary conditions on the frequency parameters of the nanoplates are investigated.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,