Article ID Journal Published Year Pages File Type
252742 Composite Structures 2012 14 Pages PDF
Abstract

This research present the development of geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. First-order, shear-deformable laminate composite plate theory is utilized in deriving the governing equations using a variational formulation. Geometric nonlinearity is accounted for in Von-Karman sense. A family of NURBS elements are constructed from refinement processes and validated using various examples. k-refined NURBS elements are developed to study thin plates. Isotropic, orthotropic and laminated composite plates are studied for various boundary conditions, length to thickness ratios and ply-angles. Computed center deflection is found to be in an excellent agreement with the literature. For thin plate analysis, linear and k-refined quadratic NURBS element is found to remedy the shear locking problem. k-refined quadratic NURBS element provide stabilized response to distorted, coarse meshes without increasing the order of the polynomial, owing to the increased smoothness of solution space.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,