Article ID Journal Published Year Pages File Type
252986 Composite Structures 2009 11 Pages PDF
Abstract

This paper presents an investigation on the nonlinear bending of simply supported, functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) subjected to a transverse uniform or sinusoidal load in thermal environments. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity and include thermal effects. A two step perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as comparators. The results show that the load-bending moment curves of the plate can be significantly increased as a result of a functionally graded reinforcement. They also confirm that the characteristics of nonlinear bending are significantly influenced by temperature rise, the character of in-plane boundary conditions, the transverse shear deformation, the plate aspect ratio as well as the nanotube volume fraction.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,