Article ID Journal Published Year Pages File Type
2530804 European Journal of Pharmacology 2016 11 Pages PDF
Abstract

The activation of autophagy has been demonstrated to exert protective roles during hypoxia-reoxygenation (H/R)-induced brain injuries. This study aimed to investigate whether and how preconditioning with a proteasome inhibitor (MG-132), a proteasome promoter (Adriamycin, ADM), an autophagy inhibitor (3-methyladenine, 3-MA) and an autophagy promoter (Rapamycin, Rap) affected endoplasmic reticulum stress (ERS), the ubiquitin-proteasome system (UPS), autophagy, inflammation and apoptosis. Ubiquitin protein and 26S proteasome activity levels were decreased by MG-132 pretreatment but increased by ADM pretreatment at 2 h, 4 h and 6 h following H/R treatment. MG-132 pretreatment led to the increased expression of autophagy-related genes, ER stress-associated genes and IκB but decreased the expression levels of NF-κB and caspase-3. ADM pretreatment led to the decreased expression of autophagy-related genes, ERS-associated genes and IκB but increased the expression of NF-κB and caspase-3. Pretreatment with 3-MA reduced the expression of autophagy-related genes, autophagy and UPS co-related genes, as well as apoptosis-related although the latter was increased by Rap pretreatment at 2 h, 4 h and 6 h following H/R treatment. In vivo, pretreatment of rats with ADM, MG-132, 3-MA or Rap followed by ischemia-reperfusion (I/R) treatment resulted in similar changes. Proteasome inhibition preconditioning strengthened autophagy and ER stress but decreased apoptosis and inflammation. Autophagy promotion preconditioning exhibited similar changes. The combination of a proteasome inhibitor and an autophagy promoter might represent a new possible therapy to treat H/R or I/R injury-related diseases.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , ,