Article ID Journal Published Year Pages File Type
2530845 European Journal of Pharmacology 2016 7 Pages PDF
Abstract

Recent studies have shown that activation of peroxisome proliferators activated receptor-γ (PPAR-γ) ameliorates renal interstitial fibrosis (RIF) in animal model. Yet, the underlying molecular mechanisms remain still largely unknown. Here, we investigated the hypothesis that activation of PPAR-γ regulates renal remodeling by modulating proliferation of primary cultured renal fibroblasts. In our present study, platelet-derived growth factor-AA (PDGF-AA), a key isoform of PDGF superfamily as mitogen in RIF, was applied to stimulate renal fibroblasts, the selective inhibitor or sequence specific siRNA of PI3K, skp2 or PPAR-γ was used to investigate the involvement of above molecular mediators in PDGF-AA-induced cell proliferation. Our results demonstrate that PDGF-AA induced proliferation of renal fibroblasts by activating PI3K/AKT signaling and resultant skp2 production. Pre-stimulation of cells with rosiglitazone or adenovirus carrying PPAR-γ cDNA (AdPPAR-γ) blocked PDGF-AA-stimulated cell proliferation, this effect was particularly coupled to PPAR-γ inhibition of AKT phosphorylation and skp2 expression. Inhibition of PPAR-γ by GW9662 restored the suppression of activated PPAR-γ on phosphorylation of AKT and subsequent skp2 production. Our results indicate that activation of PI3K/AKT signaling and resultant skp2 generation mediated PDGF-induced proliferation of renal fibroblasts. Activation of PPAR-γ inhibited cell proliferation by inhibition of AKT phosphorylation and its down-streams.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , ,