Article ID Journal Published Year Pages File Type
2531113 European Journal of Pharmacology 2016 8 Pages PDF
Abstract

The central control of the micturition is dependent on cortical areas and other ascending and descending pathways in the brain stem. The descendent pathways from the pons to the urinary bladder (UB) can be direct or indirect through medullary neurons (MN). Chemical stimulation with l-glutamate of MN known for their involvement in cardiovascular regulation evokes changes in pelvic nerves activities, which innervate the urinary bladder. Different neurotransmitters have been found in medullary areas; nevertheless, their involvement in UB control is few understood. We focused to investigate if cholinergic activation of neurons in the medulla oblongata changes the urinary bladder activity. Carbachol (cholinergic agonist) or atropine (cholinergic antagonist) was injected into the 4thV in anesthetized female Wistar rats and the intravesical pressure (IP), mean arterial pressure (MAP), heart rate (HR) and renal conductance (RC) were recorded for 30 min. Carbachol injection into the 4thV increased IP with peak response at 30 min after carbachol and yielded no changes in MAP, HR and RC. Atropine injection into the 4thV decreased IP and elicited no changes in MAP, HR and RC. Plasma vasopressin levels evaluated by ELISA kit assay increased after carbachol into the 4th V. Intravenous blockade of V1 receptors prior to carbachol into the 4thV abolished the increase in IP evoked by carbachol. Therefore, our findings suggest that cholinergic activation of neurons in the medulla oblongata by carbachol injections into the 4thV increases IP due to plasma vasopressin release, which acts in V1 receptors in the UB.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , ,