Article ID Journal Published Year Pages File Type
253113 Composite Structures 2009 11 Pages PDF
Abstract

The mechanical and thermal buckling analysis of functionally graded ceramic–metal plates is presented in this study. The first-order shear deformation plate theory, in conjunction with the element-free kp-Ritz method, is employed in the current formulation. It is assumed that the material property of each plate varies exponentially through the thickness. The displacement field is approximated in terms of a set of mesh-free kernel particle functions. The bending stiffness is evaluated using a stabilized conforming nodal integration technique, and the shear and membrane terms are computed using a direct nodal integration method to eliminate the shear locking effects of very thin plates. The mechanical and thermal buckling behaviour of functionally graded plates with arbitrary geometry, including plates that contain square and circular holes at the centre, are investigated, as are the influence of the volume fraction exponent, boundary conditions, hole geometry, and hole size on the buckling strengths of these plates.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,