Article ID Journal Published Year Pages File Type
2531636 European Journal of Pharmacology 2014 7 Pages PDF
Abstract

Dopamine D3 receptors are a major target for drug discovery programs related to psychiatric disorders such as schizophrenia. The ability of a compound to occupy significant levels of D3 receptors is important for achieving therapeutic efficacy in both pre-clinical and clinical settings. Here we attempt to characterise antipsychotic drug-effects at D3 receptors by measuring receptor occupancy via ex-vivo [3H]7-OH-DPAT autoradiography, and further validating this outcome via analysis of Fos-like immunoreactivity (Fos-LI) in the rat major islands of Calleja (ICjM), a brain structure with high D3 expression. Rats were treated subcutaneously with haloperidol (0.04 mg/kg), clozapine (20 mg/kg) and olanzapine (0.63 mg/kg), the selective D2 antagonist L-741626 (2.5 mg/kg) and the selective D3 antagonist SB-277011-A (10 mg/kg). Doses were based on levels of D2 occupancy considered clinically relevant (60–80%). When measuring D3 occupancy, clozapine and SB-277011-A displayed meaningful levels of occupancy (60% and 77%, respectively), haloperidol and olanzapine showed limited occupancy (16% and 27%, respectively), whereas L-741626 showed no occupancy. There were no significant changes in ICjM Fos-LI after L-741626 and haloperidol treatment, minor but significant increases after olanzapine treatment, whereas highly significant increases were seen with SB-277011-A and clozapine. Additionally, pre-treating clozapine with the D1 antagonist SCH23390 caused a significant, albeit non-complete, reduction in Fos-LI, highlighting the D1 agonist property of clozapine. In conclusion, it appears that drugs occupying >50% D3 receptors produce robust increases in ICjM Fos-LI. This study may help to identify the appropriate D3 receptor antagonists that have the potential to be tested in the clinic.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,