Article ID Journal Published Year Pages File Type
2532845 European Journal of Pharmacology 2011 9 Pages PDF
Abstract

Recent reports have indicated that patients with schizophrenia have a profound hypo-functionality of glutamatergic signaling pathways. Positive allosteric modulation of mGlu5 receptor has been postulated to augment NMDA function and thereby alleviate the glutamatergic hypo-function observed in schizophrenic patients. Here we report the in vitro and in vivo characterization of CPPZ (1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone), a structurally novel positive allosteric modulator selective for mGlu5 receptor. In HEK293 cells stably over-expressing human mGlu5 receptor, CPPZ potentiates the intracellular calcium response elicited by a suboptimal concentration of the endogenous agonist glutamate. CPPZ does not have any intrinsic agonist activity and behaves functionally as a positive allosteric modulator. This is further supported by binding data, which demonstrate that CPPZ is able to displace the negative allosteric modulator MPEP but does not compete with the orthosteric ligand quisqualic acid. Instead, CPPZ enhances the binding of the orthosteric ligand. In native preparations, CPPZ potentiates calcium flux in rat cortical neurons stimulated with the group I agonist dihydroxyphenylglycine (DHPG). In addition, CPPZ modulates long-term potentiation in rat hippocampal slices, a process known to be NMDA dependent. In vivo, CPPZ reverses hyper locomotion triggered by the NMDA open channel blocker MK801 in CD1 mice. CPPZ was also able to reduce rat conditioned avoidance responding to electric shock. Both in vitro and in vivo data demonstrate that this novel compound acts as an mGlu5 receptor positive allosteric modulator, which modulates NMDA dependent responses and suggests that the enhancement of mGlu5 receptor activity may prove useful in the treatment of schizophrenia.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , ,