Article ID Journal Published Year Pages File Type
253420 Composite Structures 2009 5 Pages PDF
Abstract

A three-point-bending technique is presented for identifying the elastic constants of laminated composite materials. In the proposed technique, three strains in the axial, lateral, and 45° directions on the bottom surface at the mid-span of a symmetric angle-ply beam subjected to three-point-bending testing are measured for elastic constants identification. The narrow beam theory together with the trial elastic constants is used to predict the theoretical strains of the beam. The theoretical and experimental strains of the beams are then used in a stochastic optimization method to identify the elastic constants of the beam. The accuracy and applications of the proposed technique are demonstrated by means of a number of examples on the elastic constants identification of graphite/epoxy (Gr/ep) or glass/epoxy (Gl/ep) laminated composite materials. The effects of specimen aspect ratio and thickness on the accuracy of the proposed method are investigated.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,