Article ID Journal Published Year Pages File Type
2534921 European Journal of Pharmacology 2008 7 Pages PDF
Abstract

G protein-coupled receptors, such as the adenosine A2A receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A2A receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A2A (Ki = 149 ± 27 nM) as well as A3 receptors (Ki = 240 ± 160 nM) but not to adenosine A1 receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A2A but not A2B receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A2A receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A2A receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A2A receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A2A receptors in vitro.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , ,