Article ID Journal Published Year Pages File Type
2535737 European Journal of Pharmacology 2008 7 Pages PDF
Abstract

Nobiletin isolated from citrus peels prevents bulbectomy- and amyloid-β protein-induced memory impairment in rodents. In the present study, using combined methods of biochemistry and electrophysiology, we examined the effects of nobiletin on phosphorylation of GluR1 receptor, the subunit of α-amino-3-hydroxy-5-methyl-d-aspartate (AMPA) receptors, and the receptor-mediated synaptic transmission in the hippocampus, a region implicated in memory formation, in culture and/or in slices. Western blot analysis showed that nobiletin-stimulated phosphorylation of multiple protein kinase A (PKA) substrates at 10 min following the treatment in cultured hippocampal neurons. In the cultured neurons, this natural compound also increased not only PKA activity, but also phosphorylation of GluR1 receptor at a PKA phosphorylation site, Ser 845, which has been demonstrated to be critical for synaptic plasticity, including enhancement of postsynaptic glutamate response, and important for spatial memory in vivo. The increased phosphorylation of GluR1 receptor at Ser 845 was abolished by H89 (N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride), the PKA inhibitor, but not U0126 (1,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, in the cultured neurons. An increment of the phosphorylation of GluR1 receptor at Ser 845 was induced by nobiletin in the hippocampal slices as well. Furthermore, our electrophysiological analysis showed that nobiletin potentiated the AMPA receptor-mediated synaptic transmission at Schaffer collateral-CA1 pyramidal cell synapses in the hippocampal slices. This potentiation induced by the natural compound was not accompanied by the changes in paired-pulse ratio, and partially occluded the long-term potentiation, indicating the possible involvement of the postsynaptic mechanism. These findings suggest that nobiletin probably up-regulates synaptic transmission via the postsynaptic AMPA receptors at least partially by stimulation of PKA-mediated phosphorylation of GluR1 receptor in the hippocampus.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , , , ,