Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2535838 | European Journal of Pharmacology | 2007 | 7 Pages |
Abstract
Recently, we reported that intracerebroventricularly (i.c.v.) administered histamine evokes the secretion of noradrenaline and adrenaline from adrenal medulla by brain cyclooxygenase-1- and thromboxane A2-mediated mechanisms in rats. These results suggest the involvement of brain arachidonic acid cascade in the histamine-induced activation of the central adrenomedullary outflow. Arachidonic acid is released mainly by phospholipase A2 (PLA2)-dependent pathway or phospholipase C (PLC)/diacylglycerol lipase-dependent pathway. In the present study, histamine (27 nmol/animal, i.c.v.) -induced elevation of plasma noradrenaline and adrenaline was dose-dependently reduced by U-73122 (PLC inhibitor) (10 and 100 nmol/animal, i.c.v.), ET-18-OCH3 (phosphatidylinositol-specific PLC inhibitor) (10 and 30 nmol/animal, i.c.v.) and RHC-80267 (diacylglycerol lipase inhibitor) (1.3 and 2.6 μmol/animal, i.c.v.). However, mepacrine (PLA2 inhibitor) (1.1 and 2.2 μmol/animal, i.c.v.) and D609 (phosphatidylcholine-specific PLC inhibitor) (30, 100 and 300 nmol/animal, i.c.v.) had no effect. These results suggest the involvement of brain phosphatidylinositol-specific PLC and diacylglycerol lipase in the centrally administered histamine-induced activation of the adrenomedullary outflow in rats.
Keywords
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Takahiro Shimizu, Naoko Yamaguchi, Shoshiro Okada, Lianyi Lu, Tsuyoshi Sasaki, Kunihiko Yokotani,