Article ID Journal Published Year Pages File Type
2536695 European Journal of Pharmacology 2006 11 Pages PDF
Abstract

To clarify the mechanism of the effects of angiotensin II AT1 receptor antagonists on adipose tissue, we treated 8 week-old male Wistar Kyoto rats with the angiotensin II AT1 receptor antagonist Candesartan cilexetil (10 mg/kg/day) for 18 weeks. Candesartan cilexetil reduced body weight gain, decreased fat tissue mass due to hypotrophy of epididymal and retroperitoneal adipose tissue and decreased adipocyte size without changing the number of adipocytes. Candesartan cilexetil decreased serum leptin levels and epididymal leptin mRNA, increased serum adiponectin levels and epididymal adiponectin mRNA, decreased epididymal tumor necrosis factor alpha (TNFα) mRNA, and increased fatty acid synthase mRNA. Considered free of peroxisome proliferator-activated receptor γ (PPARγ) agonist activity, Candesartan cilexetil increased epididymal expression of PPARγ mRNA. The effects of Candesartan cilexetil on adipokine production and release may be attributable to PPARγ activation and/or decrease in adipocyte cell size. In addition, Candesartan cilexetil treatment increased the expression of epididymal angiotensin II AT2 receptor mRNA and protein and decreased the expression of renin receptor mRNA. These results suggest that Candesartan cilexetil influences lipid metabolism in adipose tissue by promoting adipose tissue rearrangement and modulating adipokine expression and release. These effects are probably consequences of local angiotensin II AT1 receptor inhibition, angiotensin II AT2 receptor stimulation, and perhaps additional angiotensin II-independent mechanisms. Our results indicate that the activity of local renin–angiotensin system plays an important role in adipose tissue metabolism. The decrease in the pro-inflammatory cytokine TNFα and the increase in the anti-inflammatory adipokine adiponectin indicate that Candesartan cilexetil may exert significant anti-inflammatory properties.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , ,