Article ID Journal Published Year Pages File Type
253698 Composite Structures 2010 6 Pages PDF
Abstract

A piezoelectric laminated cylindrical shell with shear rotations effect under the electromechanical loads and four sides simply supported boundary condition was studied by using the two-dimensional generalized differential quadrature (GDQ) computational method. The typical hybrid composite shells with 3-layered cross-ply [90°/0°/90°] graphite–epoxy laminate and bounded PVDF layers are considered under the sinusoidal pressure loads and electric potentials on the shell. The governing partial differential equation with first-order shear deformation theory in terms of mid-surface displacements and shear rotations can be expressed in series equations by the GDQ formulation. Thus we obtain the GDQ numerical solutions of non-dimensional displacement and stresses at center position of laminated piezoelectric shells. Displacement is generally affected by the thickness of laminated piezoelectric shells under the action of mechanical load. Stresses are generally affected by the thickness and the length of laminated piezoelectric shells under the actions of mechanical load and electric potential.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,