Article ID Journal Published Year Pages File Type
2537032 European Journal of Pharmacology 2006 11 Pages PDF
Abstract

The cell death mechanism of cytotoxicity induced by the Biphosphinic Palladacycle Complex (BPC) was studied using a K562 leukaemia cell line. The IC50 values obtained for K562 cells post-72 h of BPC were less than 5.0 μM by using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue assays. Using the Acridine Orange vital staining combining fluorescence microscopy it was observed that the complex triggers apoptosis in K562 cells, inducing DNA fragmentation, as analysed through electrophoresis. Lysosomal-membrane permeabilization was also observed in K562 cells post-5 h of BPC, which suggests intralysossomal accumulation by proton-trapping, since its pKa value ranged from 5.1 to 6.5. Caspase-3, and -6 activity induced by BPC in K562 cells was prevented by the cathepsin-B inhibitor [N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline] (CA074). These events occurred in the presence of endogenous bcl-2 and bax expression. Acute toxicological studies demonstrated that BPC produces no lesions for liver and kidney fourteen-days after drug administration (100 mg/kg — i.p.). White and red blood cells of BPC-treated mice presented normal morphological characteristics. Taken together, these data suggest a novel lysosomal pathway for BPC-induced apoptosis, in which lysosomes are the primary target and cathepsin B acts as death mediator.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , , ,