Article ID Journal Published Year Pages File Type
254060 Composite Structures 2007 14 Pages PDF
Abstract

A two-dimensional global higher-order deformation theory is presented for the free vibration and stability problems of angle-ply laminated composite and sandwich plates subjected to thermal loading. By using the method of power series expansion of continuous displacement components, a set of fundamental governing equations which can take into account the effects of both transverse shear and normal stresses is derived through Hamilton’s principle. Several sets of truncated Mth order approximate theories are applied to solve the eigenvalue problems of a simply supported angle-ply multilayered plate. Natural frequencies and critical temperatures of angle-ply laminated composite and sandwich plates subjected to thermal loading are obtained. Critical temperatures are obtained by increasing the temperature until the natural frequency vanishes. The effects of prebuckling displacements on the natural frequencies and critical temperatures are taken into account. Modal displacement distributions through the transverse direction of the laminates are plotted for the specific temperature parameter. Numerical results are compared with those of the published existing theories. The present global higher-order approximate theories can predict the natural frequencies and critical temperatures of angle-ply laminated composite and sandwich plates subjected to thermal loading accurately within small number of unknowns.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,