Article ID Journal Published Year Pages File Type
2541240 International Immunopharmacology 2010 8 Pages PDF
Abstract
The TNF superfamily member LIGHT has potent anti-tumor activity through direct cytotoxicity and activation of the immune response, and is a promising candidate for cancer therapy. Natively, LIGHT exists as both a membrane-anchored form and a proteolytically processed, secreted form. However, the strength of the anti-tumor activity of each form of LIGHT has not been well defined. Here, to identify the optimal form of LIGHT for cancer gene therapy, we constructed fiber-mutant adenovirus vectors (AdRGD) encoding native full-length LIGHT (LIGHT/FL), stably membrane-anchored LIGHT (LIGHT/mem), and fully secreted LIGHT (LIGHT/sec). We then compared the anti-tumor effects of the different forms of LIGHT in mice by intratumoral injection of each AdRGD. We demonstrated that intratumoral injection of AdRGD-LIGHT/sec provided greater tumor suppression than AdRGD-LIGHT/FL, although this effect did not reach statistical significance. By comparison, AdRGD-LIGHT/mem had negligible anti-tumor activity. We also demonstrated that more CD4+ and CD8+ T cells accumulated inside tumors treated in vivo with AdRGD-LIGHT/sec than in tumors treated with AdRGD-LIGHT/FL or AdRGD-LIGHT/mem. These results suggest that the secreted form of LIGHT might be the optimal form for cancer gene therapy.
Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , , , ,