Article ID Journal Published Year Pages File Type
254141 Composite Structures 2007 14 Pages PDF
Abstract

The exact stiffness matrix, based on the simultaneous solution of the ordinary differential equations, for the static analysis of mono-symmetric arbitrarily laminated composite I-beams is presented herein. For this, a general thin-walled composite beam theory with arbitrary lamination including torsional warping is developed by introducing Vlasov’s assumption. The equilibrium equations and force–deformation relations are derived from energy principles. The explicit expressions for displacement parameters are then derived using the displacement state vector consisting of 14 displacement parameters, and the exact stiffness matrix is determined using the force–deformation relations. In addition, the analytical solutions for symmetrically laminated composite beams with various boundary conditions are derived as a special case. Finally, a finite element procedure based on Hermitian interpolation polynomial is developed. To demonstrate the validity and the accuracy of this study, the numerical solutions are presented and compared with the analytical solutions and the finite element results using the Hermitian beam elements and ABAQUS’s shell element.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,