Article ID Journal Published Year Pages File Type
254221 Composite Structures 2006 13 Pages PDF
Abstract

Composite aircraft structures are susceptible to impact damage during manufacture, maintenance and in-flight. Low energy impact damage is often internal and invisible, but can significantly reduce the stiffness and strength or cause catastrophic failure when the structure is under load during the impact event. This paper describes the development and application of an explicit finite element (FE) model, incorporating a bi-phase material degradation model, to predict the behaviour of loaded carbon/epoxy panels when impacted over a range of low energy levels. Overall, the trends predicted in the FE simulations were consistent with experimental data, although quantitatively the FE results were generally conservative. However, the model greatly underestimated the catastrophic failure boundary. The model was used to investigate the effect of various parameters including magnitude of preload, impact velocity and specimen geometry on the amount of damage and the residual strength of carbon/epoxy panels.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,