Article ID Journal Published Year Pages File Type
254343 Composite Structures 2006 9 Pages PDF
Abstract

The object of this study is to design radar absorbing structures (RAS) with load-bearing ability in the X-band. Glass/epoxy plain-weave composites of excellent specific stiffness and strength, containing multi-walled carbon nanotubes (MWNT) to induce dielectric loss, were fabricated. Observations of the microstructure and the permittivity of the composites confirmed that the fabrics are suitable for use as RASs. A genetic algorithm and a theory of the reflection/transmission of electromagnetic waves in a multi-layered RAS were applied to design an optimal RAS composed of MWNT-filled composites. The thickness per ply was observed to vary, depending on the number of plies and the MWNT contents. A fabrication process was proposed that considered the variation. The proposed process was in the fabrication of a designed RAS, and the theoretical and measured reflection losses of the RAS were found to be in good agreement.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,