Article ID Journal Published Year Pages File Type
2551153 Life Sciences 2014 8 Pages PDF
Abstract

AimsBoth advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).Main methodsAGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.Key findingsAGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.SignificanceThis study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (125 K)Download as PowerPoint slide

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , , ,