Article ID Journal Published Year Pages File Type
2551753 Life Sciences 2012 5 Pages PDF
Abstract

AimsThe aim of this study was to investigate the effect of testosterone treatment on the proliferation index and the mRNA expression levels of 5α-reductase, CYP7B1, androgen receptor (AR), and estrogen receptor β (ΕRβ) in the canine prostate.Main methodsImmature dogs were treated with testosterone for one month, after which prostate gland growth was assessed by comparing the proliferation index in prostates from testosterone-treated dogs with that of untreated control dogs. The relative mRNA expression levels of the aforementioned genes in the prostate glands of testosterone-treated and untreated dogs were determined by real time PCR.Key findingsTestosterone treatment induced a highly significant reduction in proliferation index in prostate gland. This inhibition of prostate gland growth was associated with differential mRNA expression of 5α-reductase, CYP7B1, AR, and ΕRβ by the prostate gland of testosterone-treated dogs, as compared to that of untreated dogs. While the expression levels of 5α-reductase and CYP7B1 mRNA were significantly down-regulated by testosterone treatment, the expression level of ER-β mRNA was highly up-regulated. In contrast, AR mRNA expression was not significantly altered.SignificanceProstate gland proliferation appeared to be associated with the expression levels of genes that encode proteins that control intra-prostatic levels of testosterone metabolites and their respective receptors. Testosterone treatment may regulate gene expression in the prostate to generate a phenotype that suppresses growth-promoting signaling through AR and enhances anti-proliferative signaling through ERβ. Therefore, targeting disturbances of this genetic machinery in benign prostate hyperplasia and prostate cancer is of a therapeutic potential.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, ,