Article ID Journal Published Year Pages File Type
2552574 Life Sciences 2009 7 Pages PDF
Abstract

AimsKolaviron, a bioflavonoid isolated from the seeds of Garcinia kola has been reported to possess anti-inflammatory, antioxidant, antigenotoxic and hepatoprotective activities in model systems via multiple biochemical mechanisms. The present study investigated the possible molecular mechanisms underlying the hepatoprotective effects of kolaviron.Main methodsBiomarkers of hepatic oxidative injury, histological and immunohistochemical techniques were used. In addition, the protein expression levels of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were evaluated by western blotting while DNA-binding activities of nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1) were determined by electrophoretic mobility shift assay.Key findingsKolaviron administered orally at doses of 100 and 200 mg/kg for 7 days significantly lowered the activities of serum transaminases and γ-glutamyl tranferase induced by single intraperitoneal administration of dimethyl nitrosamine (DMN) (20 mg/kg) and preserved the integrity of the hepatocytes. Also, kolaviron at both doses reduced the DMN induced elevated hepatic levels of malondialdehyde and reversed DMN mediated decrease in hepatic glutathione. The hepatoprotective effect of kolaviron was compared to that of curcumin, an established hepatoprotective agent. Kolaviron inhibited the DMN induced expression of COX-2 and iNOS. Immunohistochemical staining of rat liver verified the inhibitory effect of kolaviron on DMN-induced hepatic COX-2 expression. Furthermore, kolaviron abrogated DMN induced binding activity of NF-κB as well as AP-1.SignificanceThe ability of kolaviron to inhibit COX-2 and iNOS expression through down regulation of NF-κB and AP-1 DNA binding activities could be a mechanism for the hepatoprotective properties of kolaviron.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , ,