Article ID Journal Published Year Pages File Type
2553637 Life Sciences 2007 8 Pages PDF
Abstract

Traumatic brain injury induces neuron damage in early phase, and astrogliosis and the formation of the glial scar in late phase. Caffeic acid (3, 4-dihydroxycinnamic acid), one of the natural phenolic compounds, exerts neuroprotective effects against ischemic brain injuries with anti-oxidant and anti-inflammatory properties, and by scavenging reactive species. However, whether caffeic acid has protective effects against traumatic brain injury is unknown. Therefore, we determined the effect of caffeic acid on the lesion in the early (1 day) and late phases (7 to 28 days) of cryoinjury in mice. We found that caffeic acid (10 and 50 mg/kg, i.p., for 7 days after cryoinjury) reduced the lesion area and attenuated the neuron loss around the lesion core 1 to 28 days, but attenuated the neuron loss in the lesion core only 1 day after cryoinjury. Moreover, caffeic acid attenuated astrocyte proliferation, glial scar wall formation and glial fibrillary acidic protein (GFAP) protein expression in the late phase of cryoinjury (7 to 28 days). Caffeic acid also inhibited the reduction of superoxide dismutase activity and the increase in malondialdehyde content in the brain 1 day after cryoinjury. These results indicate that caffeic acid exerts a protective effect in traumatic brain injury, especially on glial scar formation in the late phase, which at least is associated with its anti-oxidant ability.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , ,