Article ID Journal Published Year Pages File Type
2554476 Life Sciences 2006 10 Pages PDF
Abstract

Metabolic syndrome is a cluster of metabolic abnormalities, including hypertension, hyperlipidemia, hyperinsulinemia, glucose intolerance and obesity. In such lifestyle-related diseases, impairment of nitric oxide (NO) production or bioactivity has been reported to lead to the development of atherogenic vascular diseases. Therefore, in the present study we investigated changes in the NO/cyclic guanosine monophosphate (cGMP) system in aortas of SHR/NDmcr-cp (cp/cp) rats (SHR-cp), a model of the metabolic syndrome. In aortas of SHR-cp, endothelium-dependent relaxations induced by acetylcholine and endothelium-independent relaxations induced by sodium nitroprusside were significantly impaired in comparison with Wistar-Kyoto rats. Furthermore, protein levels of soluble guanylyl cyclase and cGMP levels induced by sodium nitroprusside were significantly decreased. In contrast, protein levels of endothelium NO synthase and cGMP levels induced by acetylcholine were significantly increased, and plasma NO2 plus NO3 levels were also increased. The levels of lipid peroxide in plasma and the contents of 3-nitrotyrosine, a biomarker of peroxynitrite, in aortas were markedly increased. These findings indicate that in the aortas of SHR-cp, NO production from the endothelium is augmented, although the NO-induced relaxation response is impaired. Enhanced NO production may be a compensatory response to a variety of factors, including increases in oxidative stress.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , , ,