Article ID Journal Published Year Pages File Type
2554730 Life Sciences 2006 6 Pages PDF
Abstract

The aim of this study was to examine whether cariporide, a new inhibitor of Na+/H+ exchanger 1 (NHE-1), may inhibit high glucose-induced monocyte–endothelial cell adhesion and the expression of intercellular adhesion molecule-1 (ICAM-1). Cultured endothelial cells were incubated with normal glucose control (5.5 mM), cariporide control (5.5 mM glucose plus 10 μM cariporide), hyperosmolarity (5.5 mM glucose plus 16.5 mM mannitol), high glucose (HG, 22 mM), low-concentration cariporide (22 mM glucose plus 0.1 μM cariporide), medium-concentration cariporide (22 mM glucose plus 1 μM cariporide), and high-concentration cariporide (22 mM glucose plus 10 μM cariporide) for 24 h. Monocytes were isolated from peripheral human blood. Adhered monocytes were quantified by measuring their protein content. ICAM-1 expression and NHE-1 activity was determined with enzyme-linked immunosorbent assay (ELISA) and pH-sensitive fluorescent spectrophotometry. Exposure of endothelial cells to HG for 24 h caused an increase of adhesion of monocytes to endothelial cells and an increased expression of ICAM-1. However, these effects were reversed by treatment with cariporide (0.1, 1, 10 μM) in a concentration-dependent manner. Furthermore, cariporide (1 μM) was able to inhibit the activation of NHE-1 induced by HG in endothelial cells. These findings suggest that cariporide might inhibit HG-mediated monocyte–endothelial cell adhesion and expression of ICAM-1 by inhibiting the activation of NHE-1.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , ,