Article ID Journal Published Year Pages File Type
2558794 Life Sciences 2013 7 Pages PDF
Abstract

A number of β-carboline analogs have been obtained or synthesized, and their in vitro receptor affinities and in vivo antagonist activities determined. The choice of analogs was made in order to explore the importance of the N9-H, the aromatic nitrogen and the C3-ester moiety for high-receptor affinity and antagonist activity of this class of benzodiazepine antagonist. Among the analogs investigated, we describe the properties of 3-cyano-β-carboline (lh), the first potent β-carboline antagonist without a carbonyl at the C3-position.The results obtained indicate: (1) Specific interactions of the C3-substituent with key cationic receptor sites rather than electron-withdrawing properties are important for high-receptor affinity and antagonist activity. (2) Specific in-plane interactions of the atomatic nitrogen with a cationic receptor site, rather than stacking with neutral aromatic residues of the receptor are also important for high affinity and antagonist activity. (3) While the presence of an N9H enhances receptor affinity, interaction with an anionic receptor site does not appear essential for antagonist activity.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine