Article ID Journal Published Year Pages File Type
2567197 Pulmonary Pharmacology & Therapeutics 2012 7 Pages PDF
Abstract

The aim of the following study was to characterize a passive systemic anaphylaxis rat model of dinitrophenyl (DNP)-induced plasma extravasation in the trachea to determine if the model is appropriate for the evaluation of new drugs targeting airway mast cells by oral and intratracheal (i.t.) route. To this purpose we have used fluticasone and a range of anti-allergic drugs including compounds either active on mast cell activation, such as cromoglycate and the Syk inhibitor R406, or active on mast cell mediators, such as cetirizine and montelukast. To further characterize the model, the effect of fluticasone, cromoglycate and R406 on rat tracheal mast cell degranulation was also assessed histologically. DNP-induced tracheal plasma extravasation was inhibited by cromoglycate (i.v. and i.t.) and R406 (p.o.), but not by fluticasone (i.t.), cetirizine or montelukast (p.o.). Cromoglycate and R406 also showed inhibition of tracheal mast cell degranulation, whereas fluticasone was inactive. These results suggest that the DNP-induced tracheal plasma extravasation model constitutes a useful animal model for the evaluation, by oral and i.t. route, of new anti-allergic drugs intended to target airway mast cells.

Related Topics
Health Sciences Medicine and Dentistry Pulmonary and Respiratory Medicine
Authors
, , , , ,