Article ID Journal Published Year Pages File Type
2568242 Toxicology and Applied Pharmacology 2015 14 Pages PDF
Abstract

•This is the first report of SIRT1 expression and function in liver fibrogenesis and reversion.•Aberrant expression of SIRT1 might just occur at a post-transcriptional level.•LncRNA MALAT1 might be responsible for the changes of SIRT1 in liver fibrosis.

SIRT1 (silent information regulator 1), a conserved NAD +-dependent histone deacetylase, is closely related with various biological processes. Moreover, the important role of SIRT1 in alcoholic liver disease, nonalcoholic fatty liver and HCC had been widely reported. Recently, a novel role of SIRT1 was uncovered in organ fibrosis diseases. Here, we investigated the inhibitory effect of SIRT1 in liver fibrogenesis. SIRT1 protein was dramatically decreased in CCl4-treated mice livers. Stimulation of LX-2 cells with TGF-β1 also resulted in a significant suppression of SIRT1 protein. Nevertheless, TGF-β1-induced LX-2 cell activation was inhibited by SIRT1 plasmid, and this was accompanied by up-regulation of cell apoptosis-related proteins. Overexpression of SIRT1 also attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and COL1a. However, the important characteristic of the recovery of liver fibrosis is not only the apoptosis of activated stellate cells but also the reversal of the myofibroblast-like phenotype to a quiescent-like phenotype. Restoration of SIRT1 protein was observed in the in vivo spontaneously liver fibrosis reversion model and in vitro MDI (isobutylmethylxanthine, dexamethasone, and insulin)-induced reversed stellate cells, and forced expression of SIRT1 also promoted the reversal of activated stellate cells. Furthermore, lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was increased in liver fibrosis. RNAi-mediated suppression of MALAT1 resulted in a decrease of myofibroblast markers and restoration of SIRT1 protein. These observations suggested that SIRT1 contributed to apoptosis and reversion of activated LX-2 cells and SIRT1 might be regulated by MALAT1 in liver fibrosis. Therefore, SIRT1 could be considered as a valuable therapeutic target for translational studies of liver fibrosis.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , ,