Article ID Journal Published Year Pages File Type
2568671 Toxicology and Applied Pharmacology 2014 12 Pages PDF
Abstract

•Rats were treated 60 days with permethrin, chlorpyrifos and pyridostigmine bromide.•8 weeks after treatments, Nav1.9 activation and deactivation were unchanged.•The amplitude and conductance of Nav1.9 were increased 8 weeks following exposure.•Nociceptors exhibit increased action potential duration and afterhyperpolarization.•Acute permethrin altered activation physiology and increased the amplitude of Nav1.9.

Many veterans of the 1991 Gulf War (GW) returned from that conflict with a widespread chronic pain affecting deep tissues. Recently, we have shown that a 60 day exposure to the insecticides permethrin, chlorpyrifos, and pyridostigmine bromide (NTPB) had little influence on nociceptor action potential forming Nav1.8, but increased Kv7 mediated inhibitory currents 8 weeks after treatment. Using the same exposure regimen, we used whole cell patch methods to examine whether the influences of NTPB could be observed on Nav1.9 expressed in muscle and vascular nociceptors. During a 60 day exposure to NTPB, rats exhibited lowered muscle pain thresholds and increased rest periods, but these measures subsequently returned to normal levels. Eight and 12 weeks after treatments ceased, DRG neurons were excised from the sensory ganglia. Whole cell patch studies revealed little change in voltage dependent activation and deactivation of Nav1.9, but significant increases in the amplitude of Nav1.9 were observed 8 weeks after exposure. Cellular studies, at the 8 week delay, revealed that NTPB also significantly prolonged action potential duration and afterhyperpolarization (22 °C). Acute application of permethrin (10 μM) also increased the amplitude of Nav1.9 in skin, muscle and vascular nociceptors. In conclusion, chronic exposure to Gulf War agents produced long term changes in the amplitude of Nav1.9 expressed in muscle and vascular nociceptors. The reported increases in Kv7 amplitude may have been an adaptive response to increased Nav1.9, and effectively suppressed behavioral pain measures in the post treatment period. Factors that alter the balance between Nav1.9 and Kv7 could release spontaneous discharge and produce chronic deep tissue pain.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, ,