Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2569094 | Toxicology and Applied Pharmacology | 2012 | 13 Pages |
Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity.
► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.