Article ID Journal Published Year Pages File Type
2571443 Toxicology and Applied Pharmacology 2008 9 Pages PDF
Abstract

Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for the synthesis of pregnenolone. Here, we investigated the molecular mechanism of the reduction of pregnenolone synthesis by cigarette smoke condensate (CSC). Pre-exposure or post-exposure of cells with CSC led to reduced pregnenolone synthesis, in a fashion similar to its effect on isolated mitochondria. However, there was no difference in the expression of 30 kDa StAR in cells treated with moderately concentrated CSC by either regimen. The active form of 37 kDa StAR is degraded easily suggesting that the continuous presence of CSC reduces StAR expression. Mitochondrial import of 35S-methionine-labeled StAR followed by extraction of the StAR–mitochondrial complex with 1% digitonin showed similarly sized complexes in the CSC-treated and untreated mitochondria. Further analysis by sucrose density gradient centrifugation showed a specific complex, “complex 2”, in the untreated mitochondria but absent in the CSC-treated mitochondria. Mass spectrometric analysis revealed that complex 2 is the outer mitochondrial protein, VDAC1. Knockdown of VDAC1 expression by siRNA followed by co-transfection with StAR resulted in a lack of pregnenolone synthesis and 37 kDa StAR expression with reduced expression of the intermediate, 32 kDa StAR. Taken together, these results suggest that in the absence of VDAC1, active StAR expression is reduced indicating that VDAC1 expression is essential for StAR activity. In the absence of VDAC1–StAR interaction, cholesterol cannot be transported into mitochondria; thus the interaction with VDAC1 is a mandatory step for initiating steroidogenesis.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , ,