Article ID Journal Published Year Pages File Type
2574098 Vascular Pharmacology 2015 7 Pages PDF
Abstract

The increased proliferation and migration of vascular smooth muscle cells (VSMC) are key process in the development of atherosclerosis lesions. Platelet-derived growth factor (PDGF) initiates a multitude of biological effects that contribute to VSMC proliferation and migration. Apamin, a component of bee venom, has been known to block the Ca2 +-activated K+ channels. However, the effects of apamin in the regulation PDGF-BB-induced VSMC proliferation and migration has not been identified. In this study, we investigate the inhibitory effect of apamin on PDGF-BB-induced VSMC proliferation and migration. Apamin suppressed the PDGF-BB-induced VSMC proliferation and migration with no apparent cytotoxic effect. In accordance with these findings, apamin induced the arrest of cell cycle progression at G0/G1 phase. Apamin also decreased the expressions of G0/G1 specific regulatory proteins including proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinases (CDK) 4, cyclin E and CDK2, as well as increased the expression of p21Cip1 in PDGF-BB-induced VSMC. Moreover, apamin inhibited PDGF-BB-induced phosphorylation of Akt and Erk1/2. These results suggest that apamin plays an important role in prevention of vascular proliferation and migration through the G0/G1 cell cycle arrest by PDGF signaling pathway. Thus, apamin may be a promising candidate for the therapy of atherosclerosis.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (69 K)Download as PowerPoint slide

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , , , , , , , , , ,