Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2574510 | Vascular Pharmacology | 2009 | 7 Pages |
RationaleWe investigated the molecular mechanism(s) that play a role in leptin signaling during the development of left ventricular hypertrophy (LVH) due to pressure overload. To this end, ob/ob leptin deficient and C57BL/6J control mice were subjected transverse aortic constriction (TAC).MethodsControl sham C57BL/6J and ob/ob mice, along with C57BL/6J and ob/ob leptin deficient mice were subjected transverse aortic constriction (TAC) for 15 days and then evaluated for morphological, physiological, and molecular changes associated with pressure overload hypertrophy.ResultsEvaluation by echocardiography revealed a significant increase in left ventricular mass (LVmass) and wall thickness in ob/ob mice subjected to transverse aortic constriction (TAC) as compared to C57BL/6J. Analysis of the expression of molecular markers of LVH, such as atrial natriuretic peptide (ANP), revealed a blunted increase in the level of ANP in ob/ob mice as compared to C57BL/6J mice. We observed that leptin plays a role in modulating the transcriptional activity of the promoter of the ANP gene. Leptin acts by regulating NFATc4, a member of the nuclear factor activated T cell (NFAT) family of transcription factors in cardiomyocytes. Our in vivo studies revealed that ob/ob mice subjected to TAC failed to activate the NFATc4 in the heart, however, intraperitoneal injection of leptin in ob/ob mice restored the NFATc4 DNA-binding activity and induced expression of the ANP gene.ConclusionThis study establishes the role of leptin as an anti-hypertrophic agent during pressure overload hypertrophy, and suggests that a key molecular event is the leptin mediated activation of NFATc4 that regulates the transcriptional activation of the ANP gene promoter.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide